Euclidean Spaces

- The most important geometric properties that make \mathbb{R}^{n} so use are

1. The existence of a scalar product
2. A norm induced by the scalar product

In this chapter, we will extend the notions of scalar product and norm to other vector spaces different to \mathbb{R}^{n}.
$\bar{x} \cdot \bar{y}=\langle\bar{x}, \bar{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \quad$ usual scalar product in \mathbb{R}^{3}

Scalar Products
Let V be a vector space with scalars in $\mathbb{F}(\mathbb{R}$ or $\mathbb{C})$.
A scalar product on V is a function

$$
\begin{aligned}
\langle\cdot, \cdot\rangle: & V \times v \rightarrow \mathbb{F} \\
(\bar{u}, \bar{v}) & \mapsto\langle\bar{u}, \bar{v}\rangle
\end{aligned}
$$

with the following properties:

1. $\langle\vec{v}, \vec{v}\rangle \geqslant 0 ; \forall \vec{v} \in V(\mathbb{R}),\langle\bar{v}, \bar{v}\rangle \neq 0$
2. $\langle\vec{v}, \vec{v}\rangle=0$ si y solo si $\vec{v}=\overrightarrow{0}$.
3. $\langle\vec{u}+\vec{v}, \vec{w}\rangle=\langle\vec{u}, \vec{w}\rangle+\langle\vec{v}, \vec{w}\rangle ; \forall \vec{u}, \vec{v}, \vec{w} \in V$
4. $\langle\alpha \vec{u}, \vec{v}\rangle=\alpha\langle\vec{u}, \vec{v}\rangle ; \forall \alpha \in \mathbb{F}, \forall \vec{u}, \vec{v} \in V$.
5. $\langle\vec{u}, \vec{v}\rangle=\overline{\langle\vec{v}}, \vec{u}\rangle ; \quad \forall \vec{u}, \vec{v} \in V$
$\overline{\langle\bar{u}, \bar{v}\rangle}=\langle\bar{v}, \bar{u}\rangle \quad \mathbb{R} \quad \bar{a}=a$

$$
\langle\bar{u}, \bar{v}\rangle=\langle\bar{v}, \bar{u}\rangle
$$

-If $\mathbb{F}=\mathbb{C}$, then $\forall \alpha \in \mathbb{C}$ and $\forall \vec{u}, \vec{v} \in V$

$$
\langle\vec{u}, \alpha \vec{v}\rangle=\overline{\langle\alpha \vec{v}, \vec{u}\rangle}=\overline{\alpha\langle\vec{v}, \stackrel{\rightharpoonup}{u}\rangle}=\bar{\alpha}\langle\vec{u}, \vec{v}\rangle
$$

- If $\mathbb{F}=\mathbb{R}$, then $\forall \alpha \in \mathbb{R}$ and $\forall \vec{u}, \vec{v} \in V$

$$
\begin{aligned}
& \cdot\langle\vec{u}, \vec{v}\rangle=\overline{\langle\vec{v}}, \vec{u}\rangle=\langle\vec{v}, \vec{u}\rangle \\
& \cdot\langle\vec{u}, \alpha \vec{v}\rangle=\alpha\langle\vec{u}, \vec{v}\rangle
\end{aligned}
$$

Corolary

1. $\forall \vec{u} \in V,\langle\overrightarrow{0}, \vec{u}\rangle=\langle\vec{u}, \overrightarrow{0}\rangle=0$
2. $\left\langle\sum_{i} a_{i} \vec{u}_{i}, \sum_{j} b_{j} \vec{v}_{i}\right\rangle=\sum_{i, j} a_{i} \bar{b}_{j}\left\langle\vec{u}_{i}, \vec{v}_{j}\right\rangle$

$$
\forall a_{i}, b_{j} \in \mathbb{F} \text { y } \forall \vec{u}_{i}, \vec{v}_{j} \in V .
$$

$$
\overline{a b}=\bar{a} \bar{b}
$$

$$
\begin{aligned}
\Delta\langle\bar{u}, \alpha \bar{v}\rangle=\overline{\langle\alpha \bar{v}, \bar{u}\rangle} & =\overline{\alpha\langle\bar{v}, \bar{u}\rangle} \\
& =\bar{\alpha} \overline{\langle\bar{v}, \bar{u}\rangle} \\
\langle\bar{u}, \alpha \bar{v}\rangle & =\bar{\alpha}\langle\bar{u}, \bar{v}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{H}=\mathbb{R}: \quad\langle\bar{u}, \alpha \bar{v}\rangle=\alpha\langle\bar{u}, \bar{v}\rangle \\
& \bar{a}=a
\end{aligned}
$$

$$
\overline{a+b}=\bar{a}+\bar{b}
$$

$$
\begin{aligned}
\nu \bar{u}, \bar{v}+\bar{w}\rangle & =\overline{\langle\bar{v}+\bar{w}, \bar{u}\rangle}=\overline{\langle\bar{v}, \bar{u}\rangle+\langle\bar{w}, \bar{u}\rangle} \\
& =\overline{\langle\bar{v}, \bar{u}\rangle}+\overline{\langle\bar{w}, \bar{u}\rangle} \\
\langle\bar{u}, \bar{v}+\bar{w}\rangle & =\langle\bar{u}, \bar{v}\rangle+\langle\bar{u}, \bar{w}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \bar{v}-\bar{v}=\overline{0} \\
& \langle\overline{0}, \bar{u}\rangle=\langle\bar{v}-\bar{v}, \bar{u}\rangle=\langle\bar{v}, \bar{u}\rangle-\langle\bar{v}, \bar{u}\rangle=0 \\
& \langle\bar{u}, \bar{o}\rangle=\langle\bar{u}, \bar{v}-\bar{v}\rangle=\langle\bar{u}, \bar{v}\rangle-\langle\bar{u}, \bar{v}\rangle=0
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle a_{1} \bar{u}_{1}+a_{2} \bar{u}_{2}+a_{3} \bar{u}_{3}, b_{1} \bar{v}_{1}+b_{2} \bar{v}_{2}\right\rangle \\
= & \left\langle a_{1} \bar{u}_{1}, b_{1} \bar{v}_{1}+b_{2} \bar{v}_{2}\right\rangle+\left\langle a_{2} \bar{u}_{2}, b_{1} \bar{v}_{1}+b_{2} \bar{v}_{2}\right\rangle \\
& +\left\langle a_{3} \bar{u}_{3}, b_{1} \bar{v}_{1}+b_{2} \bar{v}_{2}\right\rangle \\
= & a_{1}\left\langle\bar{u}_{1}, b_{1} \bar{v}_{1}+b_{2} \bar{v}_{2}\right\rangle+a_{2}\left\langle\bar{u}_{2}, b_{1} \bar{v}_{1}+b_{2} \bar{v}_{2}\right\rangle \\
& +a_{3}\left\langle\bar{u}_{3}, b_{1} \bar{v}_{1}+b_{2} \bar{v}_{2}\right\rangle \\
= & a_{1}\left(\bar{b}_{1}\left\langle\bar{u}_{1}, \bar{v}_{1}\right\rangle+\bar{b}_{2}\left\langle\bar{u}_{1}, \bar{v}_{2}\right\rangle\right) \\
+ & a_{2}\left(\bar{b}_{1}\left\langle\bar{u}_{2}, \bar{v}_{1}\right\rangle+\bar{b}_{2}\left\langle\bar{u}_{2}, \bar{v}_{2}\right\rangle\right) \\
+ & a_{3}\left(\bar{b}_{1}\left\langle\bar{u}_{3}, \bar{v}_{1}\right\rangle+\bar{b}_{2}\left\langle\bar{u}_{3}, \bar{v}_{2}\right\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right)\left(\begin{array}{l}
\bar{b}_{1}\left\langle\bar{u}_{1}, \bar{v}_{1}\right\rangle+\bar{b}_{2}\left\langle\bar{u}_{1}, \bar{v}_{2}\right\rangle \\
\bar{b}_{1}\left\langle\bar{u}_{2}, \bar{v}_{1}\right\rangle+\bar{b}_{2}\left\langle\bar{u}_{2}, \bar{v}_{2}\right\rangle \\
\bar{b}_{1}\left\langle\bar{u}_{3}, \bar{v}_{1}\right\rangle+\bar{b}_{2}\left\langle\bar{u}_{3}, \bar{v}_{2}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right)\left(\begin{array}{ll}
\left\langle\bar{u}_{1}, \bar{v}_{1}\right\rangle & \left\langle\bar{u}_{1}, \bar{v}_{2}\right\rangle \\
\left\langle\bar{u}_{2}, \bar{v}_{1}\right\rangle & \left\langle\bar{u}_{2}, \bar{v}_{2}\right\rangle \\
\left\langle\bar{u}_{3}, \bar{v}_{1}\right\rangle & \left\langle\bar{u}_{3}, \bar{v}_{2}\right\rangle
\end{array}\right)\binom{\bar{b}_{1}}{\bar{b}_{2}}
\end{aligned}
$$

介
$\left\langle a_{1} \bar{u}_{1}+a_{2} \bar{u}_{2}+a_{3} \bar{u}_{3}, b_{1} \bar{v}_{1}+b_{2} \bar{v}_{2}\right\rangle$

	\bar{v}_{1}	\bar{v}_{2}
\bar{u}_{1}	$\left\langle\bar{u}_{1} \bar{v}_{1}\right\rangle$	$\left\langle\bar{u}_{1}, \bar{v}_{2}\right\rangle$
\bar{u}_{2}	$\left\langle\bar{u}_{2}, \bar{v}_{1}\right\rangle$	$\left\langle\bar{u}_{2}, \bar{v}_{2}\right\rangle$
\bar{u}_{3}	$\left\langle\bar{u}_{3}, \bar{v}_{1}\right\rangle$	$\left\langle\bar{u}_{3}, \bar{v}_{2}\right\rangle$

It is possible to define many scalar products in a given vector space

In a vector space V with scalar product $\langle\cdot, \cdot\rangle$, it is possible to write the product $\langle\vec{u}, \vec{v}\rangle \forall \vec{u}, \vec{v} \in V$ in matrix form.

Fix a basis $\beta=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$

$$
\langle\vec{u}, \vec{v}\rangle=[\vec{u}]_{B}^{t} G_{B}[\stackrel{\rightharpoonup}{v}]_{B}
$$

where G_{B} is called the Gram matrix of $\langle,$,$\rangle with respect to B$, given by

$$
G_{B}=\left(\left.\begin{array}{cccc}
\left\langle\vec{b}_{1}, \vec{b}_{1}\right\rangle & \left\langle\vec{b}_{1}, \vec{b}_{2}\right\rangle & \cdots & \left\langle\vec{b}_{1}, \vec{b}_{n}\right\rangle \\
\left\langle\vec{b}_{2}, \vec{b}_{2}\right\rangle & \left\langle\vec{b}_{2}, \vec{b}_{2}\right\rangle & \cdots\left\langle\vec{b}_{2}, \vec{b}_{n}\right\rangle \\
\vdots & \vdots
\end{array} \right\rvert\,\right.
$$

$$
\left|\left\langle\stackrel{\rightharpoonup}{b}_{n}, \vec{b}_{1}\right\rangle\left\langle\vec{b}_{n}, \vec{b}_{2}\right\rangle \cdots\left\langle\vec{b}_{n}, \vec{b}_{n}\right\rangle\right|
$$

- Observe that $G_{B}=\bar{G}_{B}{ }^{t}$.
- When V is a real vector space, $G_{B}=G_{B}^{t}$.

Example. Consider the usual scalar product on \mathbb{R}^{3} defined by

$$
\left\langle\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right),\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

and the basis

$$
B=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}=\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}
$$

Compute the Gram matrix of $\langle\cdot\rangle$, with respect to B.

$$
\begin{aligned}
& \langle\bar{x}, \bar{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
\\
{\left[\begin{array}{l}
\prime \prime
\end{array}\right]_{\varepsilon}}
\end{array}\left(\begin{array}{c}
I_{3} \\
I_{1} \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)\right. \\
& G_{\varepsilon}^{\prime \prime}=I_{3} \\
& I_{B}=\left(\begin{array}{lll}
\left\langle\bar{b}_{1}, \bar{b}_{1}\right\rangle & \left\langle\bar{b}_{1}, \bar{b}_{2}\right\rangle & \left\langle\bar{b}_{1}, \bar{b}_{3}\right\rangle \\
\left\langle\bar{b}_{2}, \bar{b}_{1}\right\rangle & \left\langle\bar{b}_{2}, \bar{b}_{2}\right\rangle & \left\langle\bar{b}_{2}, \bar{b}_{3}\right\rangle \\
\left\langle\bar{b}_{3}, \bar{b}_{2}\right\rangle & \left\langle\bar{b}_{3}, \bar{b}_{2}\right\rangle & \left\langle\bar{b}_{3}, \bar{b}_{3}\right\rangle
\end{array}\right) \\
& \left.B=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\right\} \\
& G_{B}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
2 & 2 & 3
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{u}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \quad \bar{v}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \\
& {[\bar{u}]_{\varepsilon}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \quad[\bar{u}]_{B}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad[\bar{v}]_{\varepsilon}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \quad[\bar{v}]_{B}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)} \\
& \langle\bar{u}, \bar{v}\rangle=[\bar{u}]_{\varepsilon}^{t} G_{\varepsilon}[\bar{v}]_{\varepsilon}=\left(\begin{array}{lll}
2 & 10
\end{array}\right)\left(\begin{array}{l}
3 \\
I_{3} \\
2 \\
1
\end{array}\right)=8 \\
& =[\bar{u}]_{B}^{t} G_{B}[\bar{v}]_{B} \\
& =\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{lll}
2 & 3 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=8
\end{aligned}
$$

Example. Consider the following scalar product defined on \mathbb{P}_{2}

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x, \quad \forall p(x), q(x) \in \mathbb{P}_{2} .
$$

Compute the Gram matrix with respect to $\varepsilon=\left\{1, x, x^{2}\right\}$ and use it to compute

$$
\begin{gathered}
\int_{0}^{1}(x-1)^{2} \cdot 2(x-1) d x \\
\langle 1,1\rangle=\int_{0}^{1} 1 d x=1 \quad\langle 1, x\rangle=\int_{0}^{1} x d x=\frac{1}{2} \\
\left\langle 1, x^{2}\right\rangle=\int_{0}^{1} x^{2} d x=\frac{1}{3} \quad\langle x, x\rangle=\int_{0}^{1} x^{2} d x=\frac{1}{3}
\end{gathered}
$$

$$
\begin{aligned}
& \left\langle x, x^{2}\right\rangle=\int_{0}^{1} x^{3} d x=\frac{1}{4} \quad\left\langle x^{2}, x^{2}\right\rangle=\int_{0}^{1} x^{4} d x=\frac{1}{5} \\
& G_{\varepsilon}=\left(\begin{array}{ccc}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 4 / 4 \\
1 / 3 & 1 / 4 & 1 / 5
\end{array}\right) \quad\langle x, 1\rangle=\langle 1, x\rangle \\
& \left(p(x) q(x) d x=[p]_{\varepsilon}^{t} G_{\varepsilon}[q]_{\varepsilon} \quad p, q \in \mathbb{P}_{2}\right. \\
& \int_{0}^{1}(x-1)^{2} \cdot 2(x-1) d x=\left[(x-1)^{2}\right]_{\varepsilon}^{t} G_{\varepsilon}[2(x-1)]_{\varepsilon} \\
& {\left[(x-1)^{2}\right]_{\varepsilon}=\left[1-2 x+x^{2}\right]_{\varepsilon}=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)} \\
& {[2(x-1)]_{\varepsilon}=\left(\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1}(x-1)^{2} \cdot 2(x-1) d x= \\
& \left(\begin{array}{lll}
1 & -2 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 3 & 1 / 4 & 1 / 5
\end{array}\right)\left(\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right) \frac{1 / 2+1 / 5}{\frac{16-15+6}{30}} \\
& =\left(\begin{array}{lll}
1 / 3 & 1 / 12 & 1 / 30
\end{array}\right)\left(\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right)=-2 / 3+1 / 6=\frac{-4+1}{6}=-1 / 2
\end{aligned}
$$

Scalar products and change of basis

Any scalar product defined on a vector space is independent of the basis chosen to represent the vectors.

Let B and C be two bases of the rector space V, and let $P_{c \in B}$ be the change of basis matrix from B to C.

$$
[\vec{x}]_{c}=P_{c \in B}[\vec{x}]_{B}, \quad \forall \vec{x} \in V .
$$

We will study the relationship between the Gram matrices with respect to two distinct bases.
For every $\quad \vec{u}, \vec{v} \in V$

$$
\begin{aligned}
\langle\vec{u}, \vec{v}\rangle & =[\vec{u}]_{c}^{t} G_{c}[\vec{v}]_{c} \\
& =\left(P_{C \in B}[\vec{u}]_{B}\right)^{t} G_{c}\left(P_{C \in B}^{P}[\vec{v}]_{B}\right) \\
& =[\vec{u}]_{B}^{t} P_{C \leftarrow B}^{t} G_{C} P_{C \leftarrow B}[\vec{v}]_{B} \\
& =[\vec{u}]_{B}^{t} G_{B}[\vec{v}]_{B}
\end{aligned}
$$

Therefore: $\quad G_{B}=P_{c \in B}^{t} G_{c} \underset{c \in B}{P}$

$$
T: V_{B} \rightarrow V_{B}^{B} \rightarrow M_{B+\tilde{B}}^{B}=P M_{\tilde{B}+B}^{\tilde{B}} P_{\tilde{B}}
$$

Example Consider the usual scalar product in \mathbb{R}^{3}. Let

$$
\varepsilon=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}, \quad B=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
$$

two bases of \mathbb{R}^{3}. Verify the relation between G_{B} and $G_{\varepsilon}=I_{3}$

$$
\begin{aligned}
& G_{B}=P_{\varepsilon \in B}^{t} G_{\varepsilon} \underset{\varepsilon^{\in} B}{P} \xrightarrow{r} G_{\varepsilon}=P_{B \pm \varepsilon}^{t} G_{B} \underset{B \in \varepsilon}{P} \\
& \underset{\varepsilon \in B}{P^{-1}} \quad \underset{\varepsilon \in B}{P^{-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\varepsilon^{4}-B}^{P}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \quad G \varepsilon=I_{3} \\
& P_{\varepsilon \in B}^{t} G_{\varepsilon} \underset{\varepsilon \in B}{ } \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)
\end{aligned}
$$

Example Let $U_{\omega_{0}}$ be the subspace of periodic functions with period $T_{0}=2 \pi / \omega_{0}$ spanned by $j=\sqrt{-1}$
$B=\left\{1, \cos \omega_{0} t, \cos 2 \omega_{0} t, j \sin \omega_{0} t, j \sin 2 \omega_{0} t\right\}$. That is, we are talking about the space of functions of the form

$$
\begin{aligned}
f(t)=a_{0}+a_{1} \cos \omega_{0} t & +a_{2} \cos 2 \omega_{0} t \\
& +b_{1} j \sin \omega_{0} t+b_{2} j \sin 2 \omega_{0} t .
\end{aligned}
$$

Another basis for this space is

$$
\begin{aligned}
& C=\left\{e^{-j 2 \omega_{0} t}, e^{-j \omega_{0} t}, 1, e^{j \omega_{0} t}, e^{j 2 \omega_{0} t}\right\} \\
& e^{-j 2 \omega_{0} t}=\cos \left(2 \omega_{0} t\right)-j \sin \left(2 \omega_{0} t\right)
\end{aligned}
$$

These two bases are related by

$$
\begin{aligned}
& \cos n \omega_{0} t=1 / 2 e^{j \omega_{0} t}+1 / 2 e^{-j n \omega_{0} t} \quad n=1,2 \\
& j \sin n \omega_{0} t=\frac{1}{2} e^{j n \omega_{0} t}-\frac{1}{2} e^{-j n \omega_{0} t} \quad n=1,2
\end{aligned}
$$

Consider the scalar product

$$
\langle f(t), g(t)\rangle=\int_{T_{0}} f(t) \overline{g(t)} d t
$$

(the scalars are complex numbers).

$$
\begin{aligned}
& \begin{array}{l}
T_{0}=2 \pi \\
\omega_{0}=1
\end{array}\langle f(t), g(t)\rangle=\int_{0}^{2 \pi} f(t) \bar{g}(t) d t \\
& \langle 1,1\rangle=\int_{T_{0}} 1 \cdot 1 d t=\left.t\right|_{0} ^{T_{0}}=T_{0} \quad\left\langle 1, \cos \omega_{0} t\right\rangle=\int_{T_{0}}^{\cos \omega_{0} t d t}=0
\end{aligned}
$$

The respective Gram matrices are

$$
\begin{aligned}
& G B=\left(\begin{array}{ccccc}
T_{0} & 0 & 0 & 0 & 0 \\
0 & T_{0} / 2 & 0 & 0 & 0 \\
0 & 0 & T / 2 & 0 & 0 \\
0 & 0 & 0 & T_{0} / 2 & 0 \\
0 & 0 & 0 & 0 & T / 2
\end{array}\right) \\
& G C=\left(\begin{array}{lllll}
T_{0} & 0 & 0 & 0 & 0 \\
0 & T_{0} & 0 & 0 & 0 \\
0 & 0 & T_{0} & 0 & 0 \\
0 & 0 & 0 & T_{0} & 0 \\
0 & 0 & 0 & 0 & T_{0}
\end{array}\right)=T_{0} I_{S}
\end{aligned}
$$

The change of basis matrix $\underset{C \in B}{ } P$ is

$$
\underset{C \in B}{P}=\left(\begin{array}{ccccc}
\downarrow[1]_{c} & & & c \in B \\
0 & 0 & 1 / 2 & 0 & -1 / 2 \\
0 & 1 / 2 & 0 & -1 / 2 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 0 & 1 / 2
\end{array}\right)=\begin{gathered}
\cos \omega_{0} t \\
=\frac{1}{2} e^{-1005 c} \\
+\frac{1}{2} e^{\omega_{0} 0^{0}}
\end{gathered}
$$

It can be easily verified that

$$
G_{B}=P_{c \in B}^{t} G_{c} P=T_{c \in B} P P^{c \leftarrow B} \quad c \leftarrow B
$$

Linear systems

Norm of a vector

Definition

$$
\begin{aligned}
& x \in \mathbb{R} \quad\left|x^{\mid}\right| \\
& \bar{x} \in \mathbb{R}^{2} \\
& \sqrt{x_{1}^{2}+x_{2}^{2}}
\end{aligned}
$$

Let V be a vector space and $\langle, \cdot\rangle$ be a scalar product in V. The norm of a vector $\bar{u} \in V$ is defined by

$$
\|\bar{u}\|=\sqrt{\langle\bar{u}, \bar{u}\rangle} . \quad|z|=x+\frac{\text { if }}{}
$$

Observe that the norm is well-defined since $\langle\bar{u}, \bar{u}\rangle \geq 0$ for all $\bar{u} \in V$.

The norm depends on the scalar product.

Properties of the norm

1. $\|\vec{u}\| \geq 0$.

$$
\sqrt{\langle\underbrace{\bar{u}, \bar{u}\rangle}}
$$

$$
\text { 2. }\|\vec{u}\|=0 \Leftrightarrow \vec{u}=\overrightarrow{0} \quad \geq 0 \quad|\alpha|>1
$$

$$
\text { 3. }\|\alpha \vec{u}\|=|\alpha|\|\vec{u}\| \quad|\alpha|<1
$$

A vector $\bar{u} \in V$ with $\|\bar{u}\|=1$ is called a unit vector.

- For any vector $\bar{v} \neq \overline{0}$, a unit vector can be easily constructed

$$
\frac{ \pm \bar{v}}{\|\bar{v}\|}\left\langle\frac{ \pm \bar{v}}{\|\bar{v}\|}, \frac{ \pm \bar{v}}{\|\bar{v}\|}\right\rangle=\frac{(\pm 1)^{2}}{\|\bar{r}\|^{2}} \frac{\langle\overline{\bar{v}}, \bar{v}\rangle}{\|\overline{\|}\|^{2}}=1
$$

Triangle inequality
For every $\bar{x}, \bar{y} \in V$:

$$
\begin{aligned}
\|\bar{x}+\bar{y}\| & \leqslant\|\bar{x}\|+\|\bar{y}\| \\
\|\bar{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}}\|\bar{x}+\bar{y}\| & =\sqrt{\left(x_{1}+y_{1}\right)^{2}+\left(x_{2}+y_{2}\right)^{2}} \\
& \leq \sqrt{x_{1}^{2}+x_{2}^{2}}+\sqrt{y_{1}^{2}+y_{2}^{2}}
\end{aligned}=\|\bar{x}\|+\|\bar{y}\|
$$

Angle between vectors
Schwartz Inequality
Let V be a vector space with scalar product $\langle\cdot$,$\rangle . For every \bar{x}, \bar{y} \in V$:

$$
\begin{aligned}
& |\langle\bar{x}, \bar{y}\rangle| \leq\|\bar{x}\| \cdot\|\bar{y}\| \Leftrightarrow \begin{array}{l}
-\|\bar{x}\|\|\bar{y}\| \leq\langle\bar{x}, \bar{y}\rangle \leq\|\bar{x}\|\|\bar{y}\| \\
-1 \leq \frac{\langle\bar{x}, \bar{y}\rangle}{n \bar{x}\| \| \bar{y} \|} \leq 1
\end{array} \\
& \cos \theta=\frac{\langle\bar{x}, \bar{y}\rangle}{\|\bar{x}\|\|\bar{y}\|} \rightarrow \theta=\operatorname{arcos} \frac{\langle\bar{x}, \bar{y}\rangle}{\|\bar{x}\|\|\bar{y}\|}
\end{aligned}
$$

Definition
The angle between two vectors \bar{x} and y is the unique number $0 \leq \alpha \leq \pi$ such that

$$
\begin{aligned}
& \cos \alpha=\frac{\langle\bar{x}, \bar{y}\rangle}{\|\bar{x}\| \cdot\|\bar{y}\|} \\
& \langle\bar{x}, \bar{y}\rangle=\|\bar{y}\|\|\bar{y}\| \cos \alpha
\end{aligned}
$$

Example Consider the two vectors

$$
\vec{x}=\binom{1}{1}, \quad \vec{y}=\binom{1}{0}
$$

Consider the usual scalar product

$$
\langle\vec{x}, \vec{y}\rangle=\vec{x}^{t} \vec{y}
$$

Compute the angle between \bar{x} and \bar{y}.

$$
\cos \alpha=\frac{\langle\bar{x}, \bar{y}\rangle}{\|\bar{x}\|\|\bar{y}\|}=\frac{1}{\sqrt{2}} \quad \alpha=\operatorname{arcos} \frac{1}{\sqrt{2}}=\frac{\pi}{4}
$$

Consider the scalar product

$$
\begin{aligned}
\langle\vec{x}, \vec{y}\rangle & =\vec{x}^{t}\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right) \vec{y} \\
\sqrt{\langle\bar{x}, \bar{x}\rangle} \bar{x}=\left(\frac{1}{1}\right) \rightarrow & =3 x_{1} y_{1}+x_{2} y_{2}
\end{aligned}
$$

Compute the angle between \bar{x} and \bar{y}.

$$
\cos \theta=\frac{3}{2 \sqrt{3}}=\frac{\sqrt{3}}{2} \quad \theta=\frac{\pi}{6} \quad\left(30^{\circ}\right)
$$

- Two vectors \bar{x} and \bar{y} are orthogonal if $\langle\bar{x}, \bar{y}\rangle=0$, equivalently, if the angle between \bar{x} and \bar{y} is $\pi / 2$.

Orthogonal and orthonormal bases.
Definition
Let V be a vector space with scalar product $\langle, \cdot\rangle$ and let $B=\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}\right\}$ be a basis of v.
B is an orthogonal basis if $\left\langle\bar{e}_{i}, \bar{e}_{j}\right\rangle=0$ when $i \neq j$. If additionally $\left\|\bar{e}_{i}\right\|=1$ for all i, the B is an orthonormal basis.

This definition can be extended to infinite dimensional vector spaces.

Example. Both

$$
B=\left\{\cos n \omega_{0} t\right\}_{n=0}^{\infty} \cup\left\{\sin n \omega_{0}\right\}_{n=1}^{\infty}
$$

and

$$
C=\left\{e^{j n \omega_{0} t}\right\}_{n=-\infty}^{\infty}
$$

are orthogonal bases of the space of periodic functions with scalar product

$$
\langle f, g\rangle=\int_{T} f(t) \overline{g(t)} d t
$$

and period $T=\frac{2 \pi}{\omega_{0}}$. $m \neq n$

$$
\begin{aligned}
& \int_{0}^{T} e^{j n \omega_{0} t} \overline{e^{j m \omega_{0} t}} d t=\int_{0}^{T} e^{j(n-m) \omega_{0} t} d t \\
& =\left.\frac{1}{j(n-m) \omega_{0}} e^{j(n-m) \omega_{0} t}\right|_{0} ^{T}=\frac{e^{j(n-m) \omega_{0} T}-1}{j(n-m) \omega_{0}}=0
\end{aligned}
$$

$$
\begin{aligned}
& T=\frac{2 \pi}{\omega_{0}} \rightarrow \omega_{0}=\frac{2 \pi}{T} \\
& \begin{aligned}
j(n-m) \omega_{0} T & =j(n-m) \frac{2 \pi}{T} \cdot T=j 2 \pi(m-n) \\
e^{j 2 \pi(n-m)} & =\underbrace{\cos (2 \pi(n-m))}_{1}+\underbrace{\sin (2 \pi(n-m))}_{j 0} \\
& =1 \\
& =1
\end{aligned}
\end{aligned}
$$

Example. The set of polynomials

$$
B=\left\{1, x, \frac{1}{2}\left(3 x^{2}-1\right), \frac{1}{2}\left(5 x^{3}-3 x\right)\right\}
$$

is an orthogonal basis of \mathbb{R}_{3}, with scalar product

$$
\begin{aligned}
& \langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x \\
& \langle 1, x\rangle=\int_{-1}^{1} x d x=\left.\frac{1}{2} x^{2}\right|_{-1} ^{1}=\frac{1}{2}(1)^{2}-\frac{1}{2}(-1)^{2}=0 \\
& \left\langle x, \frac{1}{2}\left(3 x^{2}-1\right)\right\rangle=\int_{-1}^{1} \frac{1}{2}\left(3 x^{3}-x\right) d x \\
& =\frac{1}{2}\left[\frac{\left.3 x^{4}-\frac{1}{2} x^{2}\right]_{-1}^{1}=\frac{1}{2}\left\{\frac{3}{4}-\frac{1}{2}\right\}-\frac{1}{2}\left\{\frac{3}{4}-\frac{1}{2}\right\}=0}{l}\right.
\end{aligned}
$$

Example. The matrices $j=\sqrt{-1}$

$$
\begin{array}{rlrl}
\sigma_{0} & =\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), & \quad \sigma_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\sigma_{y} & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & -j \\
j & 0
\end{array}\right), & \sigma_{z}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\frac{\sigma_{y}^{t}}{}
\end{array}
$$

form an orthogonal basis of the vector space of hermitian matrices $\left(A=\overline{A^{t}}\right)$ of size 2×2 with scalar product defined by

$$
\langle A, B\rangle=\operatorname{Trace}_{\uparrow}\left(\bar{A}^{t} B\right) \text {. }
$$

sum of the elements in the diagonal.

$$
\begin{aligned}
& \left\langle\sigma_{0}, \sigma_{x}\right\rangle=\operatorname{Trace}\left(\bar{\sigma}_{0}^{t} \sigma_{x}\right)=\operatorname{Trace}\left(\sigma_{0} \sigma_{x}\right)=0 \\
& \begin{aligned}
& \sigma_{0} \sigma_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
&=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
&\left\|\sigma_{0}\right\|=\sqrt{\left\langle\sigma_{0}, \sigma_{0}\right\rangle}=\sqrt{\operatorname{Trace}\left(\sigma_{0}^{2}\right)}=1 \\
& \sigma_{0}^{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
(1 & 0 \\
0
\end{array}\right) \\
& \hline
\end{aligned}
\end{aligned}
$$

orthonormal basis.

Quantum mechanics.

Exercise. Let V be a finite dimensional vector space with scalar product $\langle\because$, and let $B=\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ be a basis.

Show the following:

1. The basis B is orthogonal if and only if the Gram matrix is diagonal.
2. The basis B is orthonormal if and only if the Gram matrix is the identity matrix.

$$
G_{B}=\left(\begin{array}{ccc}
\left\langle\bar{e}_{1}, \bar{e}_{1}\right\rangle & \left\langle\bar{e}_{1}, \bar{e}_{2}\right\rangle & \left\langle\bar{e}_{1}, \bar{e}_{3}\right\rangle \ldots . \\
\left\langle\bar{e}_{2}, \bar{e}_{1}\right\rangle & \left\langle\bar{e}_{2}, \bar{e}_{2}\right\rangle & \left\langle\bar{e}_{2}, \bar{e}_{3}\right\rangle \ldots \\
\left\langle\bar{e}_{3}, \bar{e}_{1}\right\rangle & \left\langle\bar{e}_{3}, \bar{e}_{2}\right\rangle & \left\langle\bar{e}_{3}, \bar{e}_{3}\right\rangle \ldots
\end{array}\right)
$$

If B is orthogonal, $\left\langle\bar{e}_{i}, \bar{e}_{j}\right\rangle=0 \quad i \neq j$

$$
\left\langle\bar{e}_{i}, \bar{e}_{i}\right\rangle=\left\|\bar{e}_{i}\right\|^{2}=1
$$

Theorem
Let V be an n-dimensional vector space. The change of basis matrix between two orthonormal bases B and c satisfies

$$
\underset{C \in B}{P_{C \in B}^{t}}=P_{B \in C}^{-1}=P
$$

If B and C are orthonormal

$$
\begin{aligned}
& P P^{t}=I \\
& P=\left(\bar{p}_{1} \bar{p}_{2} \ldots \bar{p}_{n}\right) \\
& P^{t}=\left(\begin{array}{c}
\bar{p}_{1}^{t} \\
\bar{p}_{2}^{t} \\
\vdots \\
\bar{p}_{n}^{t}
\end{array}\right)
\end{aligned}
$$

$$
p^{t} P=\left(\begin{array}{cccc}
\bar{p}_{1}^{t} \bar{p}_{1} & \bar{p}_{1}^{t} \bar{p}_{2} & \ldots & \bar{p}_{2} \bar{p}_{n} \\
\bar{p}_{2}^{t} \bar{p}_{1} & \bar{p}_{2}^{t} \bar{p}_{2} & \ldots & \bar{p}_{2}^{t} \bar{p}_{n} \\
\vdots & & & \\
\bar{p}_{n}^{t} \bar{p}_{1} & \cdots & \cdots & \bar{p}_{n}^{t} \bar{p}_{n}
\end{array}\right)=I
$$

$\langle\bar{x}, \bar{y}\rangle=x^{t} \bar{y}$

$$
\bar{p}_{i}^{t} \bar{x}_{i} y \quad 1 \quad \quad \bar{p}_{i}^{t+p^{I}} \bar{p}_{j}=0 \quad i \neq j
$$

$\left\{\bar{p}_{1}, \bar{p}_{2}, \ldots, \bar{p}_{n}\right\}$ are orthonormal with respect to usual scalar product in \mathbb{R}^{n}

Theorem
Let V be a vector space with scalar product $\langle;$,$\rangle , and B=\left\{\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{n}\right\}$ is an orthogonal basis. Then, for every vector $\vec{x} \in V$

$$
\vec{x}=\frac{\left\langle\vec{x}_{1} \vec{u}_{1}\right\rangle}{\left\|\vec{u}_{1}\right\|^{2}}+\frac{\left\langle\vec{x}_{1} \vec{u}_{2}\right\rangle}{\left\|\vec{u}_{2}\right\|^{2}} \vec{u}_{2}+\cdots+\frac{\left\langle\vec{x}_{,} \vec{u}_{n}\right\rangle \vec{u}_{n}}{\left\|\vec{u}_{n}\right\|^{2}}
$$

The representation in the previous theorem is called a Fourier Series.

$$
\begin{aligned}
& \bar{x}=c_{1} \bar{u}_{1}+c_{2} \bar{u}_{2}+\cdots+c_{j} \bar{u}_{j}+\cdots+c_{n} \bar{u}_{n} \\
&\left\langle\bar{u}_{i}, \bar{u}_{j}\right\rangle=0 \quad i \neq j \\
&\left\|\bar{u}_{i}\right\|^{2}=\left\langle\bar{u}_{i}, \bar{u}_{i}\right\rangle \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\bar{x}, \bar{u}_{j}\right\rangle=\left\langle c_{1} \bar{u}_{1}+c_{2} \bar{u}_{2}+\cdots+c_{j} \bar{u}_{j}+\cdots+c_{n} \bar{u}_{n}, \bar{u}_{j}\right\rangle \\
& =c_{1}\left\langle\bar{u}_{,}, \bar{u}_{j}\right\rangle+c_{2}\left\langle\bar{u}_{2}, \bar{u}_{j}\right\rangle+c_{2}+c_{j}\left\langle\bar{u}_{j}, \bar{u}_{j}\right\rangle \\
& +\ldots+c_{n}\left\langle\bar{u}_{n}, u_{j}\right\rangle \\
& \left\langle\bar{x}, \bar{u}_{j}\right\rangle=c_{j}\left\|\bar{u}_{j}\right\|^{2} \quad c_{j}=\frac{\left\langle\bar{x}_{,} \bar{u}_{j}\right\rangle}{\left\|\bar{u}_{j}\right\|^{2}} \quad j-1,3 \cdots, n \\
& \left\|\bar{u}_{j}\right\|^{2}=1 \rightarrow c_{j}=\left\langle\bar{x}, \bar{u}_{j}\right\rangle \quad j=1,2, \ldots, n .
\end{aligned}
$$

Example. Consider the usual scalar product in \mathbb{R}^{3}, the orthogonal basis and the vector

$$
\begin{aligned}
& B=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1
\end{array}\right)\right\}, \vec{x}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \\
& \bar{b}_{1}^{\uparrow} \quad \bar{b}_{2} \uparrow \quad \bar{b}_{3}
\end{aligned}
$$

Find the Fourier series of \bar{x} with respect to B.

$$
\begin{aligned}
& \bar{x}=\underbrace{\left\langle\bar{x}, \bar{b}_{2}\right\rangle}_{4 / 3}{\bar{b}_{1}}_{\left\|\bar{b}_{1}\right\|^{2}}^{\left\langle\bar{x}_{1}, \bar{b}_{2}\right\rangle} \bar{b}_{2}+\underbrace{\left\|\bar{b}_{2}\right\|^{2}}_{-1 / 2}+\underbrace{\left\langle\bar{x}_{1} \bar{b}_{3}\right\rangle}_{1 / 3} \bar{b}_{3} \underbrace{\left\langle{ }^{2}\right.}_{\bar{b}_{3} \|^{2}} \\
& \left\langle\bar{x}, \bar{b}_{1}\right\rangle=\bar{x}^{t} \bar{b}_{1}=\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=4 \\
& \left\|\bar{b}_{1}\right\|^{2}=\left\langle\bar{b}_{1}, \bar{b}_{1}\right\rangle=\bar{b}_{1}^{t} \bar{b}_{1}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=3 \\
& \left\langle\bar{x}, \bar{b}_{2}\right\rangle=\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=-1 \\
& \left\|\overline{b_{2}}\right\|^{2}=\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=2
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\bar{x}, \bar{b}_{3}\right\rangle=\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right)\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1
\end{array}\right)=1 / 2+1-1=1 / 2 \\
& \left\|\bar{b}_{3}\right\|^{2}=\left(\begin{array}{lll}
1 / 2 & 1 / 2 & -1
\end{array}\right)\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1
\end{array}\right)=1 / 4+1 / 4+1=3 / 2 \\
& \left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\frac{4}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+\frac{1}{3}\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1
\end{array}\right)
\end{aligned}
$$

Exercise. Show that a set of non-zero orthogonal vectors is linearly independent.
$B=\left\{\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{r}\right\}$ orthogonal
if $r=\operatorname{dim} v, B$ is a basis.

$$
\begin{aligned}
& c_{1} \bar{u}_{1}+c_{2} \bar{u}_{2}+\cdots+c_{n} \bar{u}_{n}=\overline{0} \Leftrightarrow \underbrace{0=\left\langle\overline{0}_{,} \bar{u}_{j}\right\rangle=\left\langle c_{1} \bar{u}_{1}+c_{2} \bar{u}_{2}+\cdots+c_{n} \bar{u}_{n}, \bar{u}_{j}\right\rangle}_{\hat{c} c_{1}=c_{2} \cdots c_{n}=0} \\
& 0=c_{j}\left\langle\bar{u}_{j}, \bar{u}_{j}\right\rangle \Rightarrow c_{j}=0
\end{aligned}
$$

orthogonality $+\# B=\operatorname{dim} V=B$ is a basis lin. ind.

Gram-Schmidt orthogonalization method.
Let V be an n-dimensional vector space and let $B=\left\{\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{n}\right\}$ be a basis of v. Then $\left\{\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{n}\right\}$ is an orthogonal basis, where

$$
\begin{aligned}
& \vec{e}_{1}=\vec{u}_{1} \\
& \vec{e}_{2}=\vec{u}_{2}-\frac{\left\langle\vec{u}_{2}, \vec{e}_{1}\right\rangle}{\left\|\vec{e}_{1}\right\|^{2}} \vec{e}_{1} \\
& \vdots \\
& \vec{e}_{i}=\vec{u}_{i}-\lambda_{i, 1} \vec{e}_{1}-\cdots-\lambda_{i, i-1} \vec{e}_{i-1}, \lambda i, j=\frac{\left\langle\vec{u}_{i} \vec{e}_{j}\right\rangle}{\left\|\vec{e}_{j}\right\|^{2}} \\
& \quad \vdots \\
& \vec{e}_{n}=\vec{u}_{n}-\frac{\left\langle\vec{u}_{n}, \vec{e}_{1}\right\rangle \vec{e}_{1}}{\left\|\vec{e}_{1}\right\|^{2}}-\cdots-\frac{\left\langle\vec{u}_{n,}, \vec{e}_{n-1}\right\rangle}{\left\|\vec{e}_{n-1}\right\|^{2}}
\end{aligned}
$$

Fourier series of \bar{u}_{n} involving all the previous ex's. $^{\text {s }}$.

Example. Let $\vec{u}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \vec{u}_{2}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right), \vec{u}_{3}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$.
Consider the usual scalar product in \mathbb{R}^{3} and the basis $B=\left\{\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\}$. Use Gram-schmidt method to find an orthogonal and orthonormal basis of \mathbb{R}^{3}.

$$
\begin{aligned}
& \left\langle\bar{x}_{1} \bar{y}\right\rangle=\bar{x}^{t} \bar{y}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \\
& \bar{v} \neq \bar{o}, \frac{\bar{v}}{\|\bar{v}\|} \text { is a unit vector. } \\
& \bar{e}_{1}=\bar{u}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad\left\|\bar{e}_{2}\right\|^{2}=\left\langle\bar{e}_{1}, \bar{e}_{1}\right\rangle=1^{2}+1^{2}+1^{2}=3
\end{aligned}
$$

$$
\begin{aligned}
& \bar{e}_{2}=\bar{u}_{2}-\frac{\left\langle\bar{u}_{2}, \bar{e}_{1}\right\rangle}{\left\|\bar{e}_{1}\right\|^{2}} \bar{e}_{1}=\bar{u}_{2} \quad\left\|\bar{e}_{2}\right\|^{2}=1^{2}+(-1)^{2}+0^{2}=2 \\
& \left\langle\bar{u}_{2}, \bar{e}_{1}\right\rangle=\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=0 \\
& \begin{array}{l}
\bar{e}_{3}=\bar{u}_{3}-\frac{\left.\left\langle\bar{u}_{3},\right\rangle_{1}\right\rangle}{\left\|\bar{e}_{1}\right\|^{2}} \bar{e}_{1}-\frac{\left\langle\bar{u}_{3}, \bar{e}_{2}\right\rangle}{\left\|\bar{e}_{2}\right\|^{2}} \bar{e}_{2}=\bar{u}_{3}-\frac{1}{2} \bar{e}_{2}=\left(\begin{array}{l}
1 / 2 \\
1 / 2 \\
-1
\end{array}\right) \\
\left\langle\bar{u}_{3}, \bar{e}_{1}\right\rangle=\left(\begin{array}{lll}
1 & 0 & -1
\end{array}\right)(1)=0
\end{array} \\
& \left\langle\bar{u}_{3}, \bar{e}_{1}\right\rangle=\left(\begin{array}{lll}
1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=0 \\
& \left\langle\bar{u}_{3}, \bar{e}_{2}\right\rangle=\left(\begin{array}{lll}
1 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=1 \\
& \text { Orthogonal Basis: }\left\{\bar{e}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \bar{e}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \bar{e}_{3}=\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1
\end{array}\right)\right\}
\end{aligned}
$$

$$
\left\|\bar{e}_{3}\right\|^{2}=(1 / 2)^{2}+(1 / 2)^{2}+(-1)^{2}=1 / 4+1 / 4+1=3 / 2
$$

Orthonormal basis:

$$
\left\{\frac{\bar{e}_{1}}{\left\|\bar{e}_{1}\right\|}, \frac{\bar{e}_{2}}{\left\|\bar{e}_{2}\right\|}, \frac{\overline{e_{3}}}{\left\|\bar{e}_{3}\right\|}\right\}=\left\{\left(\begin{array}{l}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right),\left(\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right),\left(\begin{array}{c}
1 / \sqrt{6} \\
1 / \sqrt{6} \\
-\sqrt{2} / 3
\end{array}\right)\right\}
$$

Orthogonal Complement

Given a rector $\bar{x} \in V$ and a subspace $U \subseteq V$, we say that \bar{x} is orthogonal to U, denoted by $\bar{x} \perp u$, if \bar{x} is orthogonal to every vector in U. That is $\bar{x} \perp U \Leftrightarrow\langle\bar{x}, \bar{y}\rangle=0, \forall \bar{y} \in U$.

Theorem
Let V be a vector space with scalar product $\langle;$,$\rangle , and let U$ be a subspace of V. Then, the set

$$
u^{\perp}=\{\vec{x} \in V, \vec{x}+u\}
$$

called the orthogonal complement of u, is a subspace of V. Moreover, every vector $\bar{v} \in V$ can be written uniquely as $\bar{v}=\bar{x}+\bar{y}$ wher $\bar{x} \in U$ and $\bar{y} \in U^{\perp}$. In particular,

$$
\operatorname{dim} U^{+}=\operatorname{dim} V-\operatorname{dim} U .
$$

\mathbb{R}^{2}, usual $\left\langle\Gamma_{1}\right\rangle \quad \mathbb{R}^{3}$, usual $\langle\cdot$,

$$
\left(\mathbb{R}^{2}\right)^{\perp}=\{\overline{0}\}
$$

$$
\langle\bar{o}, \bar{v}\rangle=0
$$

u^{\perp} is a vector subspace
$\bar{x}, \bar{y} \in U^{+} \quad\langle\bar{x}, \bar{u}\rangle=\langle\bar{y}, \bar{u}\rangle=0 \quad \forall \bar{u} \in U$.

$$
\langle\alpha \bar{x}+\beta \bar{y}, \bar{u}\rangle=\alpha\langle\bar{x}, \bar{u} S+\beta\langle\bar{y}, \bar{u}\rangle=0
$$

Example. Consider the subspace of \mathbb{R}^{3}

$$
u=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\}
$$

(usual scalar product)

Compute u^{+}.

$$
\bar{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in u^{\perp}, \quad\left\langle\left(\begin{array}{l}
1 \\
0 \\
i
\end{array}\right), \bar{x}\right\rangle=0
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right) \\
& \underbrace{1 \times 3}_{A}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 \quad u^{\perp}=\operatorname{Nul}\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right) \\
& \bar{x} \in U^{\perp} \Leftrightarrow\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 \Leftrightarrow \begin{array}{c}
\bar{x} \in \operatorname{NuI}\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right) \\
x+z=0 \\
y=\lambda \\
z=\mu
\end{array}
\end{aligned}
$$

$$
u^{\perp}=\operatorname{span}\left\{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right\}
$$

Example. In \mathbb{R}^{3}, consider the scalar product with Gram matrix with respect to the canonical basis

$$
G=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)
$$

Consider the subspace

$$
u=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\} .
$$

$$
\begin{aligned}
& \text { Find } U^{\perp} \text {. }{ }^{\text {G=I I Previous example) }} \\
& \langle\bar{x}, \bar{y}\rangle=\bar{x}^{t} G \bar{y} \\
& \bar{x} \in U^{\perp} \Leftrightarrow\left\langle\binom{ i}{i}, \bar{x}\right\rangle=0 \Leftrightarrow \bar{x} \in \operatorname{NuI}(234)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 \\
& \left(\begin{array}{lll}
2 & 3 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0
\end{aligned}
$$

Orthogonal Projection
Every vector $\bar{x} \in V$ has a unique representation as $\bar{x}=\bar{u}+\bar{v}$ where $u \in U$ and $v \in U^{+}$.

The vector $\bar{u} \in U$ is called the orthogonal projection of \bar{x} over U and is denoted by \hat{x}.

Theorem
Let V be a vector space with scalar product $\langle\cdot i\rangle, U$ is a subspace, and $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{r}\right\}$ an orthogonal basis of U. Then, for every vector $\bar{x} \in V$,

$$
\hat{x}=\frac{\left\langle\vec{x}_{1} \vec{v}_{1}\right\rangle}{\left\|\vec{u}_{1}+\vec{u}_{1}\right\|^{2}}+\frac{\left\langle\vec{x}_{1} \vec{u}_{2}\right\rangle}{\left\|\vec{u}_{2}\right\|_{2}}+\cdots+\frac{\left\langle\vec{x}, \vec{u}_{r}\right\rangle}{\| \vec{u}_{r}} .
$$

Example. Let

$$
\vec{u}_{1}=\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right), \vec{u}_{2}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right), \quad \vec{u}_{3}=\left(\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right)
$$

Let U be the subspace spanned by $\left\{\bar{u}_{1}, \bar{u}_{2}\right\}$. Compute the projection operators over U and U^{1} with the usual scalar product. $\bar{x}=\left(\begin{array}{c}1 \\ -1 \\ 9\end{array}\right) \begin{aligned} & \text { compute the orthogonal } \\ & \text { projection of } \bar{x} \text { onto } u \\ & \text { with respect to the usual }\end{aligned}$ scalar product.

I need an orthogonal basis for U. Are \bar{u}_{1} and \bar{u}_{2} orthogonal, or do I
need to apply Gram-schmidt?

$$
\left\langle\bar{u}_{1}, \bar{u}_{2}\right\rangle=\left(\begin{array}{lll}
3 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)=-3+2+1=0
$$

Already orthogonal.

$$
\begin{aligned}
& \hat{x}=\frac{\left\langle\bar{x}_{1} \bar{u}_{1}\right\rangle}{\left\|\bar{u}_{1}\right\|^{2}} \bar{u}_{1}+\underbrace{\underbrace{\left\|\bar{u}_{1}\right\|^{2}}_{1}}_{\frac{\left\langle\bar{x}_{1} \bar{u}_{2}\right\rangle}{\left\|\bar{u}_{2}\right\|^{2}} \bar{u}_{2}} \\
& \left.\hat{x}=\bar{x}_{1} \bar{u}_{1}\right\rangle \bar{u}_{1}+\underbrace{\left\langle\bar{x}_{1} \bar{u}_{2}\right\rangle}_{1} \bar{u}_{2}=\underbrace{\left\|\bar{u}_{1}\right\|^{2}+\bar{u}_{2}}_{\text {component }} \\
& \langle\bar{x} \text { in } u \\
& \left\langle\bar{u}_{1}\right\rangle=\left(\begin{array}{lll}
1 & -1 & 9
\end{array}\right)\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)=3-1+9=\|
\end{aligned}
$$

$$
\begin{aligned}
& \left\|\bar{u}_{1}\right\|^{2}=\left\langle\bar{u}_{1}, \bar{u}_{1}\right\rangle=\left(\begin{array}{lll}
3 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)=11 \\
& \left\langle\bar{x}, \bar{u}_{2}\right\rangle=\left(\begin{array}{lll}
1 & -1 & 9
\end{array}\right)\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)=-1-2+9=6 \\
& \left\|\bar{u}_{2}\right\|^{2}=\left\langle\bar{u}_{2}, \bar{u}_{2}\right\rangle=\left(\begin{array}{lll}
-1 & 2 & 1
\end{array}\right)\left(\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right)=6 \\
& \bar{x}=\underbrace{\bar{u}_{1}+\bar{u}_{2}}_{\hat{x}}+\hat{u}_{3} \\
& \bar{x} u^{\perp} \\
& \bar{x}=\underbrace{\hat{x}}_{x}+\bar{u}
\end{aligned}
$$

Theorem Pythagoras!!
Let V be a vector space with scalar product $\langle\dot{j}\rangle$, and let $\bar{x}, \bar{y} \in V$, then $\bar{x} \perp \bar{y}$ if and only if

$$
\|\vec{x}+\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}
$$

\mathbb{R}^{2}, with the usual scalar product

$$
a^{2}+b^{2}=c^{2} \quad \bar{x} \perp \bar{y} \Leftrightarrow\|\bar{x}+\bar{y}\|^{2}=\|\bar{x}\|^{2}+\|\bar{y}\|^{2}
$$

Theorem
Let V be a vector space with scalar product $\langle\because\rangle$,$\rangle and let U$ be a subspace of V. For every $\bar{x} \in V, \hat{x} \in U$ is the unique vector such that

$$
\forall \bar{v} \in U, \bar{v} \neq \hat{x}, \quad\|\bar{x}-\hat{x}\|<\|\bar{x}-\bar{v}\|
$$

$$
\begin{array}{ll}
\|\bar{x}-\hat{x}\|<\|\bar{x}-\bar{v}\| \quad \forall \bar{v} \in U \\
& \bar{v} \neq \hat{x}
\end{array}
$$

